
UNDERSTANDING NORMALIZATION
A solid database structure is the foundation of any successful database application, and
you will inevitably encounter problems if your database is poorly designed. Regardless
of how you access your data, the information you retrieve is only as good as the data
upon which it is based. In this paper, I’ll cover a traditional database design topic that
seems to be quite a hurdle for many database designers and developers: Normalization.
Normalization is the process of refining table structures into a proper state so that they
can store data as efficiently as possible. Here you'll discover why Normalization is crucial
and learn how to normalize your tables using Normal Forms. First you'll learn about
modification anomalies and Dependency Theory – two issues crucial to understanding
Normal Forms. Then, I’ll discuss each Normal Form in detail and you'll learn how they
resolve problems such as multi-valued dependencies, transitive dependencies and poor
data integrity.

The Normalization Process
One of the most challenging aspects of traditional database design is Normalization.
Much has been written about it, many people have struggled with it, and some have
actually understood it. Yet, despite its reputation as a difficult process to learn and
implement, it's actually pretty easy once you understand three fundamental concepts:

• The overall premise behind Normalization

• Modification anomalies

• Data dependencies
If you learn about these concepts first, you'll find it easier to grasp the theories behind
each of the Normal Forms. We'll start by defining Normalization.
What is Normalization? It is the process of decomposing large, inefficiently structured
tables into smaller, more efficiently structured tables without losing any data in the
process. Normalization supports the proposition that a well-defined database contains
no duplicate data and keeps redundant data to an absolute minimum. This, in turn,
guarantees data integrity and ensures that the information retrieved from the database
will be accurate and reliable.
Figure 1 illustrates the Normalization process.

Normalization Process

Non-Normalized Tables

Ideal Structures
Figure 1. A graphical representation of the Normalization Process

Understanding Normalization Page 1 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Decomposing improperly structured tables is not an arbitrary process. It is instead a
methodical process you perform by testing each table against a set of Normal Forms.
A Normal Form is an algorithm you use to test the structure of a table. It helps to
eliminate possible table or field anomalies and helps to ensure efficient table and field
structures. There are seven Normal Forms, and each one was created to deal with
specific types of problems. Here are the names of the Normal Forms, including the
general issue upon which each is based.

First Normal Form Based on Functional Dependency
Second Normal Form Based on Functional Dependency
Third Normal Form Based on Functional Dependency
Fourth Normal Form Based on Multi-Valued Dependency
Fifth Normal Form Based on Join Dependency
Boyce/Codd Normal Form Based on Functional Dependency
Domain/Key Normal Form Based on the definition of Domains and Keys

Now that you have a basic idea of what the Normalization process is about, lets move on
to the second fundamental concept: modification anomalies.

Modification Anomalies
We've just discussed the concept behind the Normalization process, but we didn't
discuss why you should even go through the process in the first place. (You would have
thought I'd mention it before this moment, but you'll soon see why it makes more sense
to discuss it here.)
The main reason you put your tables through the Normalization process is to ensure
sound, efficient table structures. Improperly designed tables typically exhibit poor data
integrity and are subject to modification anomalies and data dependency problems. If
you fail to address these problems, you'll find that the information you retrieve from the
database will be inconsistent, inaccurate, and in some extreme cases, totally invalid.
In order for you to understand why you might consider a table to be improperly designed,
you must understand the problems it exhibits. (And rather obscurely, as you might think
at the moment.) We'll begin by discussing modification anomalies.
A constraint placed upon the ability to modify data in a table that is imposed by the
table's structure is known as a Modification Anomaly. There are three types of
Modification Anomalies that a table can exhibit: Insert, Delete and Update.

Insert Anomaly
An Insert anomaly exists in a table when there is an unnecessary or unreasonable
constraint placed upon the task of adding a new record, or when adding a new record
will cause unnecessary or unreasonable data redundancy
Figure 2-a illustrates an example of the first type of Insert anomaly. Because data on
employees and departments is being stored in the same table, you cannot enter data for
a new department until you have at least one employee assigned to the department.
Conversely, you cannot add a new employee unless you're ready to assign him or her to
a particular department. This type of anomaly can be hard to spot at first glance because
it is somewhat subtle.

Understanding Normalization Page 2 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

EmployeesAndDepartments

Figure 2-a. Example of an Insert Anomaly imposing an unnecessary constraint.

The second type of Insert anomaly, shown in Figure 2-b, is easier to spot because of the
redundant data in the table. In this case, all of the data for a given customer must be
repeated when another sales representative is assigned to that customer. This is borne
out in the records for Kenneth Peacock.
SalesRepAccounts

Figure 2-b. Example of an Insert Anomaly causing redundant data.

Delete Anomaly
A Delete anomaly exists when deleting a record would remove data not intended for
deletion.
Figure 3-a shows the table used in Figure 2-a to illustrate an Insert anomaly. The same
premise holds – data on both employees and departments is being stored in the table.
However, this table also has a Delete anomaly that is just the flip side of the Insert
anomaly. In this case, you have the possibility of deleting the only data you have for a
particular department if you delete the wrong employee. Such is the case with the
"Information Services" department; if you delete the record for John Callahan, you'll also
delete the only data you have on that department.
EmployeesAndDepartments

Figure 3-a. Example of a Delete Anomaly affecting a single record.

Figure 3-b shows a table that stores data on both sales representatives and orders. This
table also has a Delete anomaly, but the results of deleting a record are more serious. If
you delete a sales representative, you have the possibility of deleting a large number of

Understanding Normalization Page 3 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

records. Deleting Mike Hernandez, for example, will also delete data on orders 2, 4 and
5!
SalesRepOrders

Figure 3-b. Example of a Delete Anomaly affecting multiple records.

Update Anomaly
An update anomaly exists when modifying a specific value necessitates the same
modification in other records or tables.
In Figure 4, you would have to make changes to three records if Lone Star Distributors
decided to change their name. On the surface, this doesn't seem like a big deal.
However, it is a significant problem when you're dealing with a large number of records.
You could write programming code to deal with the problem, but then you're writing code
that you really shouldn't have to write in the first place. "But I could just update the data
using an SQL statement," you say. Unfortunately, that will work only if all the entries are
spelled exactly the same.
CustomerOrders

Figure 4. Example of an Update Anomaly imposing unnecessary modifications.

You've probably figured out by now that you want to do everything possible to avoid
modification anomalies. You can and will avoid these anomalies by putting each of your
tables through the Normalization process.
Let's now take a look at the third and final fundamental concept: dependencies.

Dependency: The Good, the Bad & the Ugly
The notion of dependencies (and modification anomalies, for that matter) falls under the
umbrella of Dependency Theory. Dependency Theory is the field of study comprising
Normalization Theory, dependency principles, and other related topics. You learned
earlier that most Normal Forms are based on various types of dependencies, and it is for
this reason that you must study them. Once you understand dependencies in general,
Normal Forms are much easier to learn and understand.
Note This is by no means an exhaustive study of dependencies. The idea here is to

provide you with a solid idea of what dependencies are about and how they fit
into Normalization.

Understanding Normalization Page 4 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

There are four types of dependencies we'll discuss in this section: functional
dependencies, transitive dependencies, multi-valued dependencies, and join
dependencies.

Functional Dependency – the Good
A functional dependency (FD) exists between two fields, A and B, when a distinct value
of A is directly associated with a distinct value of B. Given a value in A for a specific
record in a table, you can always retrieve the associated value in B for that record.

A FD is diagrammed as A→B and can be read equivalently as either of the following
statements.

"The value of A determines the value of B."

"The value of B is functionally dependent on the value of A."

Note In any dependency diagram you encounter, the field on the left hand side is
called the determinant and the field on the right hand side is called the
dependent.

Properly designed tables always contain well-defined functional dependencies. An
excellent example of a functional dependency is a Primary Key. The Primary Key
functionally determines all non-key fields in the table – given a Primary Key value for a
specific record in a table, you can retrieve the values of the remaining non-key fields in
that record. (This is true of Candidate Keys as well. But, as you know, only one
Candidate Key will serve as the Primary Key of the table.)
Figure 5 illustrates this example quite well. In this case, CustomerID determines the
values of the other fields in the table.
Customers

Figure 5. Example of a Functional Dependency.

Transitive Dependency – the Bad
Assume three fields, A, B and C, have the following functional dependencies:

A→B

B→C

Understanding Normalization Page 5 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

A transitive dependency (TD) exists between A and C because a distinct value of A is
indirectly associated with distinct value of C by way of B. Here's the logic behind this
statement:

A determines the value of B.

B determines the value of C.

Therefore, A transitively determines the value of C.

A TD is diagrammed as A⇒C and can be read equivalently as either of the following
statements.

"The value of A transitively determines the value of C (via B)."
"The value of C is transitively dependent on the value of A (via B)."

As you know, a properly designed table represents one and only one subject. However,
a table that contains transitive dependencies will describe two or more subjects,
depending on the number of transitive dependencies present. (For example, a table with
one transitive dependency will describe two subjects and a table with two transitive
dependencies will describe three subjects.) A table in this state is improperly designed
and is subject to modification anomalies.
Figure 6 shows an Employee table with a transitive dependency between the
EmployeeID and Department fields. Here's the logic:

EmployeeID determines the value of DepartmentID.
DepartmentID determines the value of Department.
Therefore, EmployeeID transitively determines the value of Department.

Employees

Figure 6. Example of Transitive Dependency.

Based on what you've just learned, you can see that the transitive dependency causes
the table to describe two distinct subjects: employees and departments. You'll have to
put the table through the Normalization process to remove the transitive dependency
and keep the table free from all modification anomalies.

Multi-Valued Dependency – the Ugly
A multi-valued dependency (MVD) exists between two fields, A and B, when a distinct
value of A is directly associated with two or more values of B.

Understanding Normalization Page 6 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

An MVD is diagrammed as A→→B and can be read equivalently as either of the
following statements.

"The value of A determines multiple values of B."

"Multiple values of B are functionally dependent on the value of A."

A multi-valued dependency can exist at the field level or record level, and two or more
distinct, independent multi-valued dependencies can appear in a table simultaneously.
Multi-valued dependencies are similar to transitive dependencies in that their presence
in a table indicates that the table describes two or more subjects. Not surprisingly, a
table in this state is improperly designed and is subject to modification anomalies.
Figure 7-a shows a table with a field-level multi-valued dependency. The transitive
dependency exists between the EmployeeID and Committees fields – a single
EmployeeID value is associated with one or more Committee values. Although it's not
obvious at this point, the table does describe two subjects: Employees and
CommitteeMembers.
EmployeeCommittees

Figure 7-a. Example of a Field-Level Multi-Valued Dependency.

In the table shown in Figure 7-b, the multi-valued dependency is at the record-level and
exists once again between EmployeeID and Committee. In this case, however, the
employee data is repeated for each committee in which the employee participates. And
this table, like its counterpart in the previous example, also describes the same two
subjects: Employees and CommitteeMembers.
EmployeeCommittees

Figure 7-b. Example of a Record-Level Multi-Valued Dependency.

Understanding Normalization Page 7 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Figure 7-c shows an example of a table with two independent multi-valued
dependencies. One multi-valued dependency exists between EmployeeID and
Language, and the other exists between EmployeeID and DeveloperCertification. Note
how the employee data is repeated for every language spoken or certification acquired.
For example, if Ann Patterson obtains a Visual Studio certification, you'll have to enter
yet another record for her in the table.
These multi-valued dependencies are called "independent" because one has absolutely
nothing to do with the other. Speaking Spanish is not a requirement for being a Visual
InterDev developer, and being a SQL Server developer is not a requirement for speaking
German. As you've probably already determined, this table describes three subjects
because of the two multi-valued dependencies: Employees, EmployeeLanguages and
EmployeeCertifications.
EmployeeInformation

Figure 7-c. Example of two independent Multi-Valued Dependencies.

Regardless of the type, all multi-valued dependencies must be resolved by
Normalization so that the table will be free of any modification anomalies

Join Dependency – the Odd Couple
A join dependency (JD) exists in table A if every record in the table can be reconstructed
by an SQL JOIN operation that reunites all tables created by its decomposition. This
must hold true for all records existing in table A at the time of its decomposition and for
any valid record that could have been entered prior to its decomposition. (Records
added to the decomposed tables must be able to form a valid record for table A when
they are united via the JOIN.) Additionally, no records should be lost and no spurious
records should be added.

Understanding Normalization Page 8 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Vendors

Figure 8-a. Example of a table with a Join Dependency.

You could say that the table in Figure 8-a has a Join dependency because you can
decompose it into smaller tables. (Just because you can decompose a table further
doesn't necessarily mean you should.) For example, let's say that you wanted to keep
sensitive information, such as a vendor's discount or status, from being accessed by
everyone in the office. You could decompose this table into two smaller tables
(VendorStatus and VendorInformation, respectively) as Figure 8-b shows.
VendorStatus

VendorInformation

Figure 8-b. The result of decomposing the Vendors table.

Because of the Join dependency, you should be able to execute the following SQL
statement and recreate the original Vendors table. Also, you should not lose any data or
gain any bogus records in the process.

SELECT VendorInformation.VendorID, VendName, Discount,
 Status, VendCity, VendPhoneNumber, VendWebPage
FROM VendorInformation
INNER JOIN VendorStatus
 ON VendorInformation.VendorID = VendorStatus.VendorID

Understanding Normalization Page 9 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

This SQL statement will, in fact, recreate the original Vendors table without any problem.
There is no requirement stating that every table must contain a Join dependency. In fact,
the only tables that are candidates for Join dependencies are those that can be further
decomposed into smaller tables. Once the decomposition has taken place, the rules
stated above must hold for the Join dependency to be valid. Otherwise, you'll have to
take the table through the Normalization process to determine whether it should indeed
contain a Join dependency.
Well, we've covered all of the fundamental concepts you need to know before tackling
Normal Forms. So let's get down to business and move to our discussion on Normal
Forms.

Understanding Normal Forms

Before you begin…
So, you've identified your tables and populated them with the fields you believe are most
appropriate at this time, and you've even gone so far as to identify relationships between
some of the tables. Now you're ready to take them through the Normalization process.
Or are you?
There are a couple of things you need to check before you start the Normalization
process.

1. Each table must have a Primary Key.
2. A table cannot contain repeating groups of data.

Each of your tables must be in this state in order for the Normalization process to be
effective. Otherwise, you could run into problems that could have easily been avoided.
Figure 9 shows a non-Normalized Orders table. Although it's in a sad state at the
moment, it is ready for the Normalization process. It does have a Primary Key and it
doesn't contain repeating groups of data, per se. (As you can see, there are repeating
groups of values within the Items field.)
However, the Items field has two obvious problems: it is a multi-part field and a multi-
valued field. It's a multi-part field because its value can be broken down into smaller,
more distinct parts. It's a multi-valued field because a single OrderID value can be
associated with one or more values within the Items field. (This is a field-level multi-
valued dependency, isn't it?)
Orders

Figure 9. A Non-Normalized Orders table.

Understanding Normalization Page 10 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Because the table is in an acceptable state, you'll take it through the Normalization
process. (We'll actually work with a few different tables throughout this discussion, but
we'll start with this one first.)
Let's begin at the beginning: First Normal Form.
Note: As we examine each Normal Form, I'll start with its technical definition and then

provide a layman's explanation and example.
 The Normal Form definitions I use here are taken from C.J. Date’s

An Introduction to Database Systems, 7th Edition [Addison Wesley, 2000].
 The term “relvar” (for relational variable) represents the term “table” for our

purposes.

First Normal Form
A relvar is in 1NF if and only if, in every legal value of that relvar, every tuple contains
exactly one value for each attribute.
The purpose of this Normal Form is to ensure that a table does not contain any multi-
part or multi-valued fields, and that each field holds only a single value for any given
record.
You can begin to normalize the Orders table by removing the multi-valued
characteristics of the Items field.
Orders

Figure 10-a. Beginning to apply First Normal Form.

The result is that you now have a repeating group of fields: Item1, Quant1, Price1,
Item2, Quant2, Price2, etc. You take care of this problem by consolidating them into
three distinct fields: Item, Quantity and Price. Additionally, you should remove the multi-
part characteristics of the Item field by dividing it into two distinct fields: ProductID and
Product. Figure 10-b shows the results of these modifications.
Orders

Figure 10-b. The Orders table in First Normal Form.

Understanding Normalization Page 11 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Although the table is far from perfect, it is now in First Normal Form and is ready to be
tested against Second Normal Form.

Second Normal Form
A relvar is in 2NF if and only if it is in 1NF and every non-key attribute is irreducibly
dependent on the Primary Key.
Your table should already be in First Normal Form before you reach this point. Second
Normal Form then ensures that each non-key field in the table is functionally dependent
upon the Primary Key, and that the table does not contain calculated fields.
You can readily see that the Orders table does not conform to Second Normal Form
because it has three distinct problems:

1. It actually describes two subjects: Orders and OrderDetails.
2. It contains a calculated field (Total)
3. It contains a transitive dependency between OrderID and Product.

Your first order of business is to decompose the table into two smaller tables called
Orders and OrderDetails. This ensures that the Orders table describes a one and only
one subject.
Orders

OrderDetails

Figure 11-a. Applying Second Normal Form to the Orders table.

The newly revised Orders table is now in Second Normal Form, so you can turn our
attention to the OrderDetails table.
Note that the transitive dependency and calculated field have migrated to this table
during the decomposition process. Dealing with the calculated field is not a problem
because all you have to do is remove it from the table; the transitive dependency is
another matter. You learned earlier that the presence of a transitive dependency
indicates that the table describes two subjects. In this case, the table actually describes
OrderDetails and Products. You resolve the transitive dependency by removing the

Understanding Normalization Page 12 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Product field from the OrderDetails table and then creating a new Products table with
ProductID and Products as its fields. It is important that you use the ProductID field as
part of the new Products table because it is what will relate the Products table to the
OrderDetails table. Once you're finished, the OrderDetails table is in Second Normal
Form.
Figure 11-b shows the newly revised OrderDetails table and the new Products table.
Pop quiz: Is the new Products table in at least Second Normal Form?
OrderDetails

Products

Figure 11-b. The OrderDetails and Products table in Second Normal Form.

With the OrderDetails table in Second Normal Form, you can now move on to Third
Normal Form.

Third Normal Form
A relvar is in 3NF if and only if it is in 2NF and every non-key attribute is non-
transitively dependent on the Primary Key.
As the definition states, a table must already be in Second Normal Form before you can
apply Third Normal Form. If this is the case, you then apply Third Normal Form to ensure
that the table has the following characteristics:

• Each field value is independently updateable; changing the value for one field in
a given recrod does not adversely affect the value of any other field in that
record.

• Each field identifies a specific characteristic of the table's subject.
• Each non-key field in the table is functionally dependent upon the entire Primary

Key

• The table describes one and only one subject.

Understanding Normalization Page 13 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Because the Orders and OrdersDetail tables are already in Second Normal Form, you
can now apply Third Normal Form to both tables.
When you apply Third Normal Form to the Orders table, you end up with the structure
shown in Figure 12-a. Notice anything different about this structure and its Second
Normal Form counterpart in Figure 11-a?
Orders

Figure 12-a. The Orders table in Third Normal Form.

If your answer is "No", then you're absolutely correct. It just so happens that the Orders
table already conforms to Third Normal Form, so you don't need to make any
modifications to its structure.
If you take a look at the OrderDetails table back in Figure 11-b, you'll see that it has one
minor problem: one of its fields does not describe the table's subject. Can you determine
which field is the culprit? Here's a hint: the field in question is involved in a transitive
dependency.
The offending field is the Price field. Price doesn't represent a specific characteristic of
an order detail as much as it describes a specific characteristic of a particular product.
Additionally, its value is actually determined by ProductID. If you consider that the
OrderDetails table has a Composite Primary Key consisting of OrderID and ProductID,
you can see that the value of Price is not dependent on the entire Primary Key, as
required by Third Normal Form. You can solve this dilemma by removing Price from the
table. (You won't lose anything in the process because Price is already in the Products
table.) Figure 12-b shows the result of your modification.
OrderDetails

Figure 12-b. The OrderDetails table in Third Normal Form.

Let's now take a look at a slightly different way of arriving to the same structure by using
Boyce/Codd Normal Form.

Understanding Normalization Page 14 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Boyce/Codd Normal Form
A relation is in Boyce/Codd Normal Form if and only if the only determinants are
Candidate Keys.
Boyce/Codd Normal Form is a different version of Third Normal Form and, indeed, was
meant to replace it. The purpose of Boyce/Codd Normal Form is twofold.

• It ensures that a field that determines the value of any or all non-key fields in a
table must be a Candidate Key for that table.

• It ensures that a table that describes one and only one subject. (This is implied
by enforcing Candidate Keys.)

Boyce/Codd Normal Form is slightly stronger than Third Normal Form in that it deals with
the possibility of a table having more than one field that could act as the Primary Key.
Provided that you can identify all the valid Candidate Keys in a table, you can ensure
that the table is free of transitive dependencies, and by extension, free of modification
anomalies.
Note Review time! A Candidate Key is a field or group of fields that has all the required

characteristics of a Primary Key, the most important of which is that it determines
the values of all non-key fields in the table. After you identify the Candidate Keys
for a given table, you select one that will serve as the table's official Primary Key.

Figure 13-a shows an OrderDetails table with three determinants: OrderID and
LineItemNumber (taken as a single unit), OrderID and ProductID (taken as a single unit)
and ProductID. In order to apply Boyce/Codd Normal Form, you first need to identify if
these determinants are Candidate Keys of the table. Would you say that all three are
Candidate Keys?
OrderDetails

Figure 13-a. A OrderDetails table containing three determinants.

You are correct if you answered "No" – OrderID\ProductID and OrderID\LineItemNumber
are the only Candidate Keys. Although ProductID is not a Candidate Key, it does
determine the value of Product and Price. As you may have already guessed, this
means that the Product and Price fields are involved in transitive dependencies with both
Candidate Keys. You will, therefore, have to remove the Product and Price fields from
the table. You'll also have to remove the Total field because neither of the Candidate
Keys determines its value. Instead, Quantity and Price determine the value of the Total
field. Once you remove these three fields, the table will be in Boyce/Codd Normal Form.
Figure 13-b shows the results of your modifications.

Understanding Normalization Page 15 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

OrderDetails

Figure 13-b. The OrderDetails table in Boyce/Codd Normal Form.

Most tables that are in Boyce/Codd Normal Form will require no further Normalization.
However, you'll need to take the table through Fourth Normal Form if it contains any
multi-valued dependencies.

Fourth Normal Form
Relvar R is in 4NF if and only if, whenever there exist subsets A and B of the attributes
of R such that the (nontrivial) MVD A→→B is satisfied, then all attributes of R are also
functionally dependent on A.
The purpose of Fourth Normal Form is to ensure that a table does not contain any multi-
valued dependencies, and that it describes one and only one subject. (Have you noticed
by now that the latter point is a recurring theme across the higher Normal Forms?)
You learned earlier that a table containing multi-valued dependencies describes two or
more subjects, depending on the number of multi-valued dependencies present. You
also learned that you must remove all multi-valued dependencies from the table. You'll
accomplish this by applying Fourth Normal Form to the table.
Figure 14-a shows a table called EmployeeCommittees that contains a single multi-
valued dependency. The first version has a field-level multi-valued dependency and the
second version contains a record-level multi-valued dependency. The manner in which
you apply Fourth Normal Form to each table is exactly the same and yields the same
results.
EmployeeCommittees – Version 1

Understanding Normalization Page 16 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

EmployeeCommittees – Version 2

Figure 14-a. Two versions of the EmployeeCommittees table.

In applying Fourth Normal Form to a table containing a single multi-valued dependency,
you build a new table using a copy of the Primary Key and the field containing the
multiple values. Using the Primary Key as part of the structure of the new table is
important because it relates the new table to the original table. (Be sure to give the new
table an appropriate name.) You then decompose the original table by removing the
multi-valued field. And Voila! Both the newly revised table and the new table are now in
Fourth Normal Form.
Figure 14-b shows the results of applying these steps to the EmployeeCommittes table.
EmployeeCommittees

Employees

Figure 14-b. The Employees and EmployeeCommittees tables in Fourth Normal Form.

Understanding Normalization Page 17 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

If you encounter a table with two or more multi-valued dependencies, you just repeat the
same steps for each dependency. For example, Figure 14-c shows an employees table
with two independent multi-valued dependencies.
EmployeeInformation

Figure 14-c. An Employees table with two independent multi-valued dependencies.

You'll deal with each multi-valued dependency as you did in the previous example.
1. Create a new table using the Primary Key (EmployeeID) and the first multi-

valued field (Language). Give the new table an appropriate name.
2. Create another new table using the Primary Key(EmployeeID) and the

second multi-valued field (DeveloperCertification). Give the new table an
appropriate name.

3. Remove the two multi-valued fields from the original table.
The newly revised original table (EmployeeInformation) and the two new tables are now
in Fourth Normal Form. Figure 14-d shows the results of applying Fourth Normal Form to
the EmployeeInformation table.
EmployeeInformation

EmployeeLanguages EmployeeCertifications

Figure 14-d. The EmployeeInformation, EmployeeLanguages, and EmployeeCertifications
tables in Fourth Normal Form.

Understanding Normalization Page 18 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Fifth Normal Form
A relvar R is in 5NF – also called Projection/Join Normal Form (PJ/NF) – if and only if
every non-trivial join dependency that holds for R is implied by the Candidate Keys of R.
You learned earlier in this discussion that a join dependency exists for a given table if
the table and all of its original records can be reconstructed by an SQL JOIN operation
that reunites all tables created by its decomposition. You can test for this type of
dependency by using Fifth Normal Form.
By the time a table has achieved Fourth Normal Form, it should be free of all transitive
and multi-valued dependencies. In most cases, you shouldn't need to decompose the
table any further. However, if you suspect that you can (or should) decompose the table
once more, you must test whether there is a valid join dependency in the table. There
are three key questions that you must answer before decomposing the table any further:

1. Can I create the new table(s) using the Primary Key or a Candidate Key as
part of the new table structure? (Remember that this was a requirement for
resolving transitive and multi-valued dependencies.)

2. Can I recreate the original table by using an SQL JOIN operation that
reunites all of the tables recreated by the decomposition?

3. Will I lose any records in the process of decomposing the table?
If the answer to each question is "Yes", then the table is in Fifth Normal Form and you
can confidently make the decomposition. However, just because you can decompose
the table further, it doesn't necessarily mean that you should.
Figure 15-a shows an Employees table that could possibly be decomposed into smaller
tables. Is it in Fifth Normal Form? Study the table for a moment and use the three
questions stated above to make your determination.
Employees

Figure 15-a. Is this table in Fifth Normal Form?

The answer is "Yes." You can use the Primary Key (EmployeeID) or the Candidate Key
(SocialSecurityNumber) as part of a new table structure, you can recreate the original
table, and you won't lose any records in the decomposition process.
Why might you possibly want to decompose this table? One possible reason is that you
want to separate sensitive employee data from general employee data. For example,
you could decompose the original table into the two new tables shown in Figure 15-b.

Understanding Normalization Page 19 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

EmployeeInformation

EmployeeConfidential

Figure 15-b. New EmployeeInformation and EmployeeConfidential tables.

When you want to see the information from the original table, you can use this SQL
statement to do so.

SELECT EmployeeInformation.EmployeeID,
 SocialSecurityNumber, EmpFirstName, EmpLastName,
 EmpCity, EmpState, EmpPhoneNumber, MotherMaidenName,
 BirthDate
FROM EmployeeInformation
INNER JOIN EmployeesConfidential
 ON EmployeeInformation.EmployeeID =
 EmployeesConfidential.EmployeeID

You won't often run into situations where you need Fifth Normal Form, but it's good to
know that it's available when you need it.

Domain/Key Normal Form
Relvar R is said to be in DKNF if and only if every constraint on R is a logical
consequence of the domain constraints and key constraints that apply to R.
Domain/Key Normal Form is a newer Normal Form (as Normal Forms go) and is similar
to Boyce/Codd Normal Form in that it is partially based on the enforcement of Primary
Keys and Candidate Keys. So you already understand at least that much of this Normal
Form.
But it is also based upon the idea of Domains. Most texts on database design state that
a Domain is merely a set of acceptable values from which a specific field can draw its
own values. That's only partially true; a Domain is much more than that. A Domain has
two sides: a logical side and a physical side. The logical side deals with issues such as
default values, range of values, whether the value is required and whether the value can
be Null. The physical side deals with issues such as data type, length, decimal places

Understanding Normalization Page 20 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

and allowable characters. Once you understand this idea, you can use this Normal
Form.
In order for a table to be in Domain/Key Normal Form it must fulfill these requirements.

1. Each field must be fully and properly defined.
2. Each field must represent a characteristic of the table's subject.
3. Each non-key field in the table must be functionally dependent upon the

entire Primary Key.
4. Each table should represent only a single subject. (Sound familiar?)

A table in Domain/Key Normal Form will be free of transitive dependencies, multi-valued
dependencies and modification anomalies. In fact, a table in Domain/Key Normal Form
is automatically in Fifth Normal Form.
Figure 16-a shows an Employees table that might be a candidate for Domain/Key
Normal Form. Can you Normalize this table further by applying Domain/Key Normal
Form?
Employees

Figure 16-a. Can you Normalize this Employees table any further?

You can indeed. One of the requirements of Domain/Key Normal Form is that the
Primary Key determine the value every non-key column in the table. This certainly isn't
the case with the Department field. You'll have to remove the Department field in order
to place the table in Domain/Key Normal Form. Figure 16-b shows the result of your
modification.
Employees

Figure 16-b. The Employees table in Domain/Key Normal Form.

Using Domain/Key Normal Form depends as much on intuition as anything else. You
have to understand the concepts of Keys and Domains thoroughly before you can really
benefit from this Normal Form. But it works pretty well once you get the hang of it.

Understanding Normalization Page 21 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

De-Normalization
Now we tackle one of the most oft' asked questions: "What about de-Normalization?"
The real answer is this: Ask a dozen database developers and you'll get a dozen
opinions.
Many people who de-Normalize their database structures do so for “performance
reasons”. Here are some of the problems they claim to encounter.

• Queries run slowly.

• Reports take too long to print.

• On-screen forms take time to populate.

• Web pages take too long to populate.
Speed and performance are really relative to a user's definition of the terms. What some
people may consider painfully slow may be as fast as greased lightning for others. You
should always take performance complaints with a grain of salt and try to take the time
to investigate the true nature of a perceived problem.
Although you could justify some de-normalization from a strictly pragmatic sense, you
should always de-Normalize as a last resort. Instead, try some of the following remedies
before you embark upon any de-Normalization.

• Update your computer equipment. Prices are really low and you can purchase a
powerful system quite inexpensively.

• Optimize the operating environment. Do what you can to optimize your network
by working closely with your network administrator.

• Optimize the RDBMS program. Make certain you're loading only those pieces of
the software that you really need, and carefully tweak any options and settings
that are available to you.

• Use indexes effectively. Indexes can speed up query processing enormously, so
using them judiciously can have a very positive effect on the time it takes to
retrieve information from your database.

• Write good, tight procedural code. Make certain that you're using optimal code
structures and that you're code offers that path of least resistance to your data.

• Write well-structured SQL statements. Although there are several ways to pose
the same query, some statements are optimized better than others. Be sure to
check your database documentation for more information on this subject.

• START WITH A NORMALIZED STRUCTURE! 'Nuff said.
The most important point for you to remember is that you will always re-introduce data
integrity problems when you de-Normalize your structures! This means that it becomes
incumbent upon you or the user to deal with this issue. Either way, it imposes an
unnecessary burden upon the both of you. De-Normalization is one issue that you'll have
to weigh and decide for yourself whether the perceived benefits are worth the extra effort
it will take to maintain the database properly.

Understanding Normalization Page 22 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

A Final Thought
In all the years that I've been involved in the database management profession, I've
learned that database design is as much an art as it is a science. You learn the SCIENCE
of database design through instruction and training, and the art of database design
through personal experience. You'll find that studying database theory, design and
technology is an on-going exercise and a rewarding experience.
This job never gets boring!

Understanding Normalization Page 23 of 23
Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

	The Normalization Process
	Modification Anomalies
	Insert Anomaly
	Delete Anomaly
	Update Anomaly

	Dependency: The Good, the Bad & the Ugly
	Functional Dependency – the Good
	Transitive Dependency – the Bad
	Multi-Valued Dependency – the Ugly
	Join Dependency – the Odd Couple

	Understanding Normal Forms
	Before you begin…
	First Normal Form
	Second Normal Form
	Third Normal Form
	Boyce/Codd Normal Form
	Fourth Normal Form
	Fifth Normal Form
	Domain/Key Normal Form

	De-Normalization
	A Final Thought

